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Abstract. The spectrum of eigenenergies of a quantum integrable system whose Hamiltonian
depends on a single parameter shows degeneracies (crossings) when the parameter varies. We
derive a semiclassical expression for the density of crossings in the plane energy–parameter, that
is the number of crossings per unit of energy and unit of parameter, in terms of classical periodic
orbits. We compare the results of the semiclassical formula with exact quantum calculations for
two specific quantum integrable billiards.

Introduction

The analysis of energy spectra of different physical bounded systems has always been an
interesting subject in quantum mechanics. The energy level spacings as well as the existence
of degeneracies (crossings) in such systems have been widely studied during recent years.
The number of degrees of freedom, the separability of the problem and the number of free
parameters involved, among others, are very important features which have to be taken into
account when a given quantum spectrum is analysed.

Starting from Percival’s ideas [1] for systems with more than one degree of freedom,
two kinds of spectra have been distinguished. The regular spectrum, whose level spacing is
characterized by a Poisson distribution [2], is associated with integrable problems (the harmonic
oscillator is an exception). The other one, the irregular spectrum closely characterized by
spectral statistic of the Gaussian ensembles, corresponds to non-integrable systems [3–5].
This statistical behaviour can be related to crossings and repulsions between levels with the
same symmetry when the spectra are analysed as a function of the parameters of the problem.
In fact, integrable systems depending on one parameter exhibit many crossings while non-
integrable systems show repulsions and double-hyperbola curves (avoided crossings), rather
than degeneracies. So, for one-parameter-dependent systems, the presence of crossings or
avoided crossings are quantum fingerprints of the properties of the classical dynamics. When
the system depends on two parameters, the surfaces of energy (that define in such cases the
eigenenergies) will cross in continuum curves leading to diedric intersections when the system
remains integrable, or they will intersect at isolated points (‘diabolical points’) if the system
is not integrable (assuming that it has time reversal symmetry) [6].

Distributions of avoided crossings (for one-parameter-dependent systems) according to
properties such that the closest approach or the mean and difference between the slopes of the
involved levels were already established for a generic quantum system employing parametric
random-matrix models [7, 8]. The same models, extended to two and more parameters, were
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used to study distributions of diabolical points [9] and other relevant distributions of singular
points in the spectra [10].

On the other hand, it is well known that classical periodic orbits are essential elements
to develop semiclassical quantization methods. Not only for integrable systems (through
the Berry–Tabor formula [11]) but also for the non-integrable ones (using the Gutzwiller
methods [12]), the spectral density can be formally described in terms of closed orbits of the
classical system. Therefore, it would not be surprising that other quantum densities such as
densities of degeneracies or densities of avoided crossings can be related to the periodic orbits.

In this paper, we find the density of degeneracies as an expansion in terms of the periodic
orbits for classical integrable systems depending on one parameter.

In section 1 we introduce the density of degeneracies. The semiclassical version can
be written as a sum of a smooth part and oscillating contributions depending on the periodic
orbits of the classical system. Section 2 is devoted to compute the smooth part of the density of
degeneracies and related distributions for two specific integrable systems whose Hamiltonians
depend on a single parameter in a different functional form. We study the rectangular billiard of
sidesa andb where the parameter is the ratioµ = b/a (shape parameter) and the Aharonov–
Bohm cylindrical billiard where the parameter is the magnetic flux, that isµ = φ. The
oscillating contributions are computed in section 3. Finally, section 4 is devoted to concluding
remarks. We have included an appendix that contains the appropriate derivations of the
semiclassical density of degeneracies when conjugated states by time reversal transformation
could be not degenerated (like the Aharonov–Bohm cylindrical billiard).

1. The density of degeneracies

We consider an integrable system whose Hamiltonian depends on a single parameterµ. That
is

H = H( EI , µ) (1.1)

whereEI ≡ (I1, . . . , In)andIi = 1
2π

∮
pi dqi are the action variables. To obtain the eigenvalues,

we can employ the EBK semiclassical quantization rule

Ii = h̄
(
ni +

αi

4

)
(1.2)

whereni = 0, 1, 2, . . . andαi are the Maslov index [12]. So, we establish the quantum
eigenenergiesE by

E(En,µ) = H
(
En +
Eα
4
, µ

)
. (1.3)

When we consider the eigenenergies as a function of the parameterµ, the spectrum shows
degeneracies (crossings). They occur whenever

H

(
En +
Eα
4
, µ

)
−H

(
En′ + Eα

4
, µ

)
= 0. (1.4)

Given En and En′, this equation determines the values of the parameterµ for which the
eigenenergies labelled byEn andEn′ are degenerated,

µ = L
(
En +
Eα
4
, En′ + Eα

4

)
. (1.5)

We define the density of degeneraciesρc(E,µ) as the number of crossings that occurs in the
energy interval [E,E + dE] and in the parameter interval [µ,µ + dµ].
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Therefore, using the EBK rule, we can writeρc(E,µ) as follows:

ρc(E,µ) = 1

2

∑
En

∑
En′
δ

(
E −H

(
En +
Eα
4
, µ

))
δ

(
µ− L

(
En +
Eα
4
, En′ + Eα

4

))
(1.6)

where we disregard as in [2] possible degeneracy factors. The diagonal terms in equation (1.6)
deserve some comments (see appendix A). Employing the Poisson summation formula in
equation (1.6) we write

ρc(E,µ) = 1

2h̄2n

∑
Em

∑
Em′

exp
[
−i
π

2
(Eα · Em + Eα · Em′)

]
×
∫
EI>0

∫
EI ′>0

dnI dnI ′δ(E −H( EI , µ))δ(µ− L( EI , EI ′))

× exp

[
i
2π

h̄
( Em · EI + Em′ · EI ′)

]
. (1.7)

In the following, to make the expressions more easily handled, we assume two degrees of
freedom.

To eliminate theδ-functions, we change the integration variables as follows:

(I1, I
′
1, I2, I

′
2)→ (I1, I

′
1, ξ1, ξ2) (1.8)

where we have defined
ξ1 ≡ E −H(I1, I2, µ)
ξ2 ≡ µ− L(I1, I2, I ′1, I ′2).

(1.9)

Therefore

dI1 dI2 dI ′1 dI ′2 =
1

| ∂H
∂I2

∂L
∂I ′2
| dI1 dI2 dξ1 dξ2. (1.10)

The partial derivative∂L/∂I ′2 is defined by the implicit equation

H(I1, I2, L)−H(I ′1, I ′2, L) = 0 (1.11)

and we obtain∣∣∣∣ ∂L∂I ′2
∣∣∣∣ = 1

| ∂H
∂L
)I − ∂H

∂L
)I ′ |

∂H

∂I ′2
(1.12)

where ∂H
∂L
)I and ∂H

∂L
)I ′ are the partial derivatives evaluated inI andI ′. After integration over

ξ1 andξ2 follows

ρc(E,µ) = 1

2h̄4

∑
Em

∑
Em′

exp
[
−i
π

2
(Eα · Em + Eα · Em′)

]
×
∫
I1>0

∫
I ′1>0

dI1 dI ′1
|∂µH − ∂µH ′|

ω2ω
′
2

exp

[
i
2π

h̄
( Em · EI + Em′ · EI ′)

]
(1.13)

where

∂µH ≡ ∂H(I1, I2(E, I1), µ)

∂µ
(1.14)

∂µH
′ ≡ ∂H(I ′1, I

′
2(E, I

′
1), µ)

∂µ
(1.15)

ω2 ≡ ∂H(I1, I2, µ)

∂I2
(1.16)

ω′2 ≡
∂H(I ′1, I

′
2, µ)

∂I2
′ . (1.17)
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The first term in equation (1.13) (withm1 = m2 = m′1 = m′2 = 0) corresponds to replacing
the quadruple sum in equation (1.6) by the quadruple integral. It is a smooth function (i.e.
non-oscillating) ofE andµ,

〈ρc(E,µ)〉 = 1

2h̄4

∫
I1

∫
I ′1

dI1 dI ′1
|∂µH − ∂µH ′|

ω2ω2
′ . (1.18)

Starting from equation (1.18) we can determine other relevant distributions. As an example,
we can obtain the smooth part of the distribution of crossings〈ρc(E,µ, V )〉 according to the
difference between the slopes of the levels,

V ≡ |∂µH − ∂µH ′|. (1.19)

To obtain such a distribution (in the following DCDS), we perform the change of the integration
variables in equation (1.18)

(I1, I
′
1)→ (I1, V ). (1.20)

Therefore

dI1 dI ′1 =
dI1 dV

|∂µω′1− (ω
′
1
ω′2
)∂µω

′
2|

(1.21)

where theωmust be considered as a function ofI1, V andµ. Leaving out the integration over
V , follows

〈ρc(E,µ, V )〉 = 1

2h̄4V

∫
I1

dI1
ω2|ω′2∂µω′1− ω′1∂µω′2|

. (1.22)

We stress that the dependence onV in equation (1.22) is not only given by the prefactorV but
also by the integrand and the limits of integration in the integral overI1.

The other terms in equation (1.13) contain oscillating functions and we utilize the stationary
phase technique to evaluate them. The conditions of stationary phase lead to the periodicity
conditions, namely

ω1

ω2
= m1

m2
(1.23)

ω′1
ω′2
= m′1
m′2
. (1.24)

Becauseωk (ω′k) are positive, the sums overmk (m′k) in equation (1.13) are restricted to the
first and the third quadrants. The numbersm1, m2 define the topology of the periodic orbits.
However, there could be pairs of periodic orbits that having the same topology, they are related
to each other through time reversal transformation (non-self-retracing orbits).

For the termsm1 6= 0, m2 6= 0, m′1 = m′2 = 0 (m1 = m2 = 0, m′1 6= 0, m′2 6= 0) we first
perform the integration over the variableI ′1(I1) and next we evaluate the second integral using
the stationary phase approximation. Finally, we obtain

ρc(E,µ)osc1 = 1

h̄7/2

∑
m1,m2 6=(0,0)

1m1,m2

|m2
d2I2
dI 2

1
|1/2

[ ∫
I ′1>0

P(Io1 , I
′
1) dI ′1

]
× cos(S(m1, m2)/h̄ + θ(m1, m2)) (1.25)

where we have defined

P(X, Y ) ≡
∣∣∣∣∂µH(X)− ∂µH ′(Y )ω2(X)ω2(Y )

∣∣∣∣ (1.26)

S(m1, m2) ≡ 2π(m1I
o
1 +m2I

o
2 ) (1.27)
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θ(m1, m2) ≡ π

4
sig

(
m2

d2I2

dI 2
1

)
− π

2
(α1m1 + α2m2) (1.28)

1m1,m2 ≡
{

2 if there are two orbits of topologym1,m2

1 otherwise.
(1.29)

I o1 = I o1 (m1, m2), I o2 = I o2 (m1, m2) are the values of the actions given by equation (1.23). On
the other hand, form1 6= 0 orm2 6= 0 andm′1 6= 0 orm′2 6= 0 we obtain

ρc(E,µ)osc2 = 2

h̄3

∑
m1,m2 6=(0,0)

∑
m′1,m

′
2 6=(0,0)

1m1,m21m′1,m
′
2
P(Io1 (m1, m2), I

′o
1 (m

′
1, m

′
2))

|m2m
′
2

d2I2
dI 2

1

d2I ′2
dI ′21
|1/2

× cos(S(m1, m2)/h̄ + θ(m1, m2)) cos(S(m′1, m
′
2)/h̄ + θ ′(m′1, m

′
2)). (1.30)

Let us remark that the summations overm1,m2 in equation (1.25) and overm1, m2, m
′
1, m

′
2

in equation (1.30) are restricted to the first quadrant.

2. The smooth part of the density of crossings

In this section we compute the smooth part of the density of crossing starting from
equation (1.18) for two specific systems. We will consider two kinds of billiards whose
Hamiltonian depend on the parameterµ in a different way.

2.1. Rectangular billiards

At first we study the well known rectangular billiard. That is a spinless particle in a two-
dimensional rectangular box of sidesa andb. The Hamiltonian in terms of the action variables
is

H(I1, I2) = π2

2m

(
I 2

1

a2
+
I 2

2

b2

)
. (2.1)

In this case we will consider the crossings as a function of the shape parameterµ = b/a. We
fix the area of the boxA = ab as a constant to conserve invariant the smooth part of the density
of states. So the Hamiltonian can be written as

h = µI 2
1 +

I 2
2

µ
(2.2)

whereh ≡ 2mAH
π2 . In the following we will use the Hamiltonian given by equation (2.2) and

we call the corresponding energy asε ≡ 2mAE
π2 .

Taking into account that

I2 =
√
µε − µ2I 2

1 (2.3)

ω2 = 2I2
µ

(2.4)

|∂µh− ∂µh′| = 2|I 2
1 − I ′21 | (2.5)

and setting ¯h = 1, we obtain, after replacing in equation (1.18),

〈ρc(ε, µ)〉 = µ

4

∫ I ′1=
√
ε/µ

I ′1=0

dI ′1√
ε − µI ′21

[ ∫ I1=
√
ε/µ

I1=I ′1

(I 2
1 − I ′21 ) dI1√
ε − µI 2

1

+
∫ I1=I ′1

I1=0

(I ′21 − I 2
1 ) dI1√

ε − µI 2
1

]
(2.6)
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Figure 1. Integrated density of crossingsdncdε as a function of the energyε for the rectangular

billiard. The straight lines correspond to the smooth part〈 dncdε 〉 = ε
4 ln( µ2

µ1
) for µ2 = 6 (dashed

line) andµ2 = 2 (solid line). In both casesµ1 = 1.

which after elementary integration leads to

〈ρc(ε, µ)〉 = 1

4

ε

µ
. (2.7)

To compare this result with the exact one obtained by quantum calculation, we integrate
the above density of crossings over the parameterµ. In this way we establish the mean number
of crossing in the finite interval [µ1, µ2] with energies betweenε andε + dε:〈

dnc
dε
(ε, µ1, µ2)

〉
=
∫ µ2

µ1

〈ρc(ε, µ)〉 dµ

= 1

4
ε ln

(
µ2

µ1

)
(2.8)

which is a linear function ofε. Figure 1 shows the predictions of the preceding result forµ1 = 1
andµ2 = 2 (solid curve) andµ2 = 6 (dashed curve) together with the exact calculations.

Now we apply equation (1.22) to obtain the DCDS. We define the relative difference of
slopes asv ≡ V/Vmax whereV = 2|I 2

1 − I 2
2 | andVmax is the highest value ofV for a given

value of the energyε and the parameterµ (in the present exampleVmax= 2ε/µ). By changing
the variables in equation (2.6)(I1, I ′1) → (z = I1

√
µ/ε, v) and leaving out the integration

overv, we obtain

〈ρc(ε, µ, v)〉 = 1

4

ε

µ
g(v) (2.9)

where

g(v) = v
∫ z=1

z=√v

dz√
(1− z2)(1− (z2 − v))(z2 − v)

. (2.10)
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Figure 2. Distribution of crossingsg(v) according to the relative difference between the slopes
v for the rectangular billiard. The result predicted for the smooth part of density of crossings
corresponds to the dashed curve.

Therefore, the joint distribution equation (2.9) is factorizable as〈ρc(ε, µ)〉g(v). This means
that the distribution of crossings according to the relative difference between the slopes
of the levels is a global property of the system. It holds for any region in the planeε–
µ. Equation (2.10) is normalized to one and gives the fraction of crossings whose relative
difference of slopes is in the interval [v, v + dv], and it is independent of the values ofε and
µ. For example, the distribution of the number of crossings in the intervals [0, ε] and [1, µ]
according to the difference of the slopes is〈

dnc
dv

〉
= ε2 lnµ

8
g(v). (2.11)

That is, if we construct a histogram of the relative difference between the slopes for all the
crossings in the intervals [0, ε] and [1, µ], the smooth part of such a histogram will be given by
equation (2.10). Figure 2 shows the distribution equation (2.10) together with the histogram
resulting from the exact quantum calculation computing the relative difference between the
slopes of the crossings that occur in the regionε < 3000 and 16 µ 6 2 (∼720 000 crossings).

2.2. Aharonov–Bohm cylindrical billiards

As a second example, we consider the Aharonov–Bohm cylindrical billiard. That is a spinless
particle confined in a two-dimensional cylindrical shell of heighta and radiusr axially threaded
by a confined magnetic fluxφ. The Hamiltonian is (takingI1 as non-negative)

H(I1, I2) =
(I1± q8

2πc )
2

2mr2
+
π2I 2

2

2ma2
(2.12)

which can be rewritten as

h = γ (I1± φ)2 + I 2
2 (2.13)
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whereγ ≡ a2

π2r2 , φ ≡ q8

2πc andh ≡ 2ma2H
π2 . As in the first example we define the energy

ε ≡ 2ma2E
π2 . Now, we will consider the crossings as a function of the normalized magnetic flux

φ. That is we setµ = φ. Taking into account that

I2 =
√
ε − γ (I1± µ)2 (2.14)

ω2 = 2I2 (2.15)

|∂µh− ∂µh′| = 2γ |I1± I ′1| (2.16)

and setting ¯h = 1, we obtain

〈ρc(ε, µ)〉 = γ
∫ I ′1=

√
ε/γ

I ′1=0

dI ′1√
ε − γ I ′21

[ ∫ I1=
√
ε/γ

I1=I ′1

(I1− I ′1) dI1

2
√
ε − γ I 2

1

+
∫ I1=I ′1

I1=0

(I ′1− I1) dI1

2
√
ε − γ I 2

1

+
∫ I1=

√
ε/γ

I1=0

(I1 + I ′1) dI1

2
√
ε − γ I 2

1

]
. (2.17)

To derive equation (2.17) it is necessary to take into account in equation (1.6) the effect of
the breaking of the time reversal invariance (see appendix). After performing the integrations,
equation (2.17) gives

〈ρc(ε, µ)〉 = 2
√
ε√
γ
. (2.18)

This smooth density of crossings is independent on the parameterµ (the flux). Therefore, the
number of crossing betweenε andε + dε per unit of flux is given by equation (2.18). Figure 3
shows〈ρc(ε, µ)〉 given by equation (2.18) and the exact quantum calculation for a system with
γ = 4

π2 .
Starting from equation (2.17), it is not difficult to establish the DCDS. Let us distinguish

the crossings according to the relative sign between the slopes. We label by a plus sign(+)
(minus sign,(−)) the crossings between levels with equal (different) sign of their slopes. We
can discriminate in equation (2.17) the contributions from both kinds of crossing. The first
and second integral in the square bracket correspond to crossings with the same sign of the
slopes while the third integral corresponds to crossings with different sign. Thus we find

〈ρc(ε, µ)〉 = 〈ρc(ε, µ)+〉 + 〈ρc(ε, µ)−〉
〈ρc(ε, µ)+〉 =

√
ε

γ

(
2− π

2

)
〈ρc(ε, µ)−〉 =

√
ε

γ

π

2
.

(2.19)

Although the smooth part of the density of crossings depends on the energyε and on the shape
parameterγ , the fractions of each kind of crossing are the same for all cylinders and they are
independent on the energies.

To establish the DCDS we proceed as follows. We define the relative jump of the slopes
as

v =
√
γ

ε
|I1− I ′1| (2.20)

for crossings with same sign of the slopes and

v =
√
γ

ε
(I1 + I ′1) (2.21)
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Figure 3. Integrated density of crossingsdncdε as a function of energyε for the Aharonov–

Bohm cylindrical billiard withγ = 4
π2 . The solid smooth curve corresponds to the smooth

part〈 dncdε 〉 = 2
√
ε
γ

.

for crossings with different slope signs. In this wayv results 06 v 6 1 for crossings labelled
(+) while it is 06 v 6 2 for crossings(−).

Thus, by changing variables in equation (2.17) and leaving out the integration overv we
obtain

〈ρc(ε, µ, v)〉 =


2
√
ε

γ
(gI (v)

+ + gI (v)
−) if v 6 1

2
√
ε

γ
gII (v)

− if 2 > v > 1
(2.22)

where

gI (v)
+ = 1

2
v

∫ 1

v

dz√
1− (z− v)2√1− z2

gI (v)
− = 1

4
v

∫ v

0

dz√
1− (v − z)2√1− z2

gII (v)
− = 1

4
v

∫ 1

v−1

dz√
1− (v − z)2√1− z2

.

(2.23)

Equation (2.22) gives the mean number of crossings per unit of flux that occur in the interval
of energy [ε, ε + dε] and such that the relative difference between the slopes lies in the interval
[v, v+dv] per unit of flux. Forv 6 1 there are two contributions. The first integral corresponds
to crossings with the same slope signs and the second one corresponds to crossings between
levels with different slope signs. Forv > 1, only crossings with different slope signs can
occur. Let us remark that the joint distribution〈ρc(ε, µ, v)〉 is factorizable (as in the rectangular
billiard)

〈ρc(ε, µ, v)〉 = 〈ρc(ε, µ)〉g(v) (2.24)
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0 0.5 1 1.5 2
v

0

0.2

0.4

0.6

0.8

1

g

0 0.5 1 1.5 2
v

0

0.2

0.4

0.6

0.8

1

ge

(a) (b)

Figure 4. Distribution of crossingsg(v) according to the relative difference between the slopesv.
(a) Exact quantum results. (b) Results predicted for the smooth part of the density of crossings.
The dashed curve corresponds to crossings between levels with equal sign of their slopes, while
the solid curve corresponds to crossings between levels with different sign.

with

g(v) =
{
gI (v)

+ + gI (v)
− if v 6 1

gII (v)
− if 1 < v 6 2.

(2.25)

As in the rectangular billiard, distribution equation (2.25) holds irrespective of the values of
the flux and the energy. Therefore, the distribution of crossing below an energyε according
to the value ofv will be given by〈

dnc(ε, µ, v)

dv

〉
= g(v)

∫ ε

0
〈ρc(ε′, µ)〉 dε′

= 4

3

(ε)3/2√
γ
g(v). (2.26)

Figure 4 showsg(v) predicted by equations (2.23) together with the exact quantum results
obtained computing the crossings forε < 1400 between 06 µ < 1 (nc = 105 158 crossings).
We have discriminated the crossings according to whether the slopes of the levels have the
same sign (gI (v)+, dashed curve) or different sign (g−I + g−II , solid curve). Note that there are
n+
c = 22 266 crossings(+) andn−c = 82 892 crossings(−). These results are consistent with

equation (2.19) which implies

n+
c

nc
= 2− π

2
n−c
nc
= π

2
.

(2.27)

3. The oscillating contributions

In this section we calculate the oscillating contributions to the density of crossings,
equation (1.25). They are determined by the periodic orbits that satisfy condition
equation (1.23).

3.1. Rectangular billiards

Given the Hamiltonian equation (2.1) the periodic orbits are classified according to the topology
(m1, m2), m1(m2) being the number of bounces on a side of lengthb(a) before the periodic
orbits are closed.
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Taking into account equation (2.1) and the requirement equation (1.23), we have
I o1µ

2

I o2
= m1

m2
(3.1)

and

I o1 (m1, m2) =
 ε

m2
1
µ

+m2
2µ

1/2

m1

µ

Io2 (m1, m2) =
 ε

m2
1
µ

+m2
2µ

1/2

m2µ.

(3.2)

Therefore, from equations (1.27) and (1.28) follows

S(m1, m2) = 2π

√(
m2

1

µ
+m2

2µ

)
ε (3.3)

θ(m1, m2) = −π
4
. (3.4)

On the other hand, using equation (2.3), we have∣∣∣∣d2I2

dI 2
1

∣∣∣∣ = µ3ε

I 3
2

. (3.5)

We replace equations (3.2), (3.3) and (3.5) in equation (1.25), and performing elemental
integrations we obtain the oscillating contributions

ρc(ε, µ)osc1 =
∑

m1,m2 6=(0,0)

(
ε

µ

)3/4 1

(m2
1 +m2

2µ
2)1/4

[
(4m1m2µ + πm2

2µ
2 − πm2

1)

8(m2
1 +m2

2µ
2)

+
(m2

1 −m2
2µ

2)

2(m2
1 +m2

2µ
2)

arcsin

(
m1√

m2
1 +m2

2µ
2

)]

× cos

2π

√(
m2

1

µ
+m2

2µ

)
ε − π

4

. (3.6)

On the other hand, replacing equations (3.2), (3.3) and (3.5) in equation (1.30) we obtain

ρc(ε, µ)osc2 =
∑

m1,m2 6=(0,0)

∑
m′1,m

′
2 6=(0,0)

(
ε

µ

)1/2 1

(m2
1 +m2

2µ
2)1/4(m′21 +m′22µ2)1/4

×
∣∣∣∣ m2

1

(m2
1 +m2

2µ
2)
− m′21
(m′21 +m′22µ2)

∣∣∣∣
× cos

2π

√(
m2

1

µ
+m2

2µ

)
ε − π

4

 cos

2π

√(
m′21
µ

+m′22µ
)
ε − π

4

.
(3.7)

Unlike the smooth part, equation (2.7), both contributions involve information about the
individual crossings. The calculation ofρc(ε, µ)osc2 implies a quadruple sum (over
m1, m2, m

′
1, m

′
2) whileρc(ε, µ)osc1 is a double sum. However, if we consider onlyρc(ε, µ)osc1

we have a satisfactory resolution of the individual crossings in the planeε–µ as can be seen
in figure 5. This figure shows a region in the planeε–µ where there are three crossings.
In figure 5(a) the exact quantum levels are plotted. Figure 5(b) shows the oscillating part,
equation (1.25), consideringm1 andm2 up to 150.
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Figure 5. (a) Detail of three exact quantum eigenenergies for the rectangular billiard as a function
of µ where three crossings can be observed. (b) Density plot of the oscillating partρcosc1 (see
section 3.1 in the text) of the density of crossings in the same region of the planeε–µ.

3.2. Aharonov–Bohm cylindrical billiards

In this example, the periodic orbits are labelled by the number of rotations around the axis of
the cylinder (m1) and the number of bounces on the base of the cylindrical surface (m2) before
the periodic orbits are closed. Taking into account that

I o1γ

Io2
= m1

m2
(3.8)

and

I o1 (m1, m2) =
(

ε

γ (m2
1 + γm2

2)

)1/2

m1

I o2 (m1, m2) =
(

γ ε

(m2
1 + γm2

2)

)1/2

m2

S(m1, m2) = 2π
√
ε

γ
(m2

1 + γm2
2)

d2I2

dI 2
1

= γ ε

I 3
2

(3.9)

we obtain (for details see the appendix):

ρc(ε, µ)osc1 =
∑

m1,m2 6=(0,0)
1m1

[
ε

γ (m2
1 + γm2

2)

]1/4 [
m1√

m2
1 + γm2

2

arcsin

(
m1√

m2
1 + γm2

2

)

+
√
γm2√

m2
1 + γm2

2

]
× cos

(
2π
√
ε

γ
(m2

1 + γm2
2)−

π

4

)
cos(2πm1µ) (3.10)

where1m1 = 2 if m1 6= 0 and10 = 1, and

ρc(ε, µ)osc2 =
∑

m1,m2 6=(0,0)

∑
m′1,m

′
2 6=(0,0)

∣∣∣∣ m1

(m2
1 + γm2

2)
− m′1
(m′21 + γm′22 )

∣∣∣∣
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Figure 6. (a) Detail of three exact quantum eigenenergies for the Aharonov–Bohm cylindrical
billiard as a function of the fluxφ where three crossings can be observed. (b) Density plot of the
oscillating partρcosc1 (see section 3.2 in the text) of the density of crossings in the same region of
the planeε–φ.

×
[

cos

(
2π

(√
ε

γ
(m2

1 + γm2
2)−

√
ε

γ
(m′21 + γm′22 )

))
× cos(2π(m1−m′1)µ)
+ cos

(
2π

(√
ε

γ
(m2

1 + γm2
2) +

√
ε

γ
(m′21 + γm′22 )−

1

4

))
× cos(2π(m1 +m′1)µ)

]
+

[
m1

(m2
1 + γm2

2)
+

m′1
(m′21 + γm′22 )

]
×
[

cos

(
2π

(√
ε

γ
(m2

1 + γm2
2) +

√
ε

γ
(m′21 + γm′22 )−

1

4

))
× cos(2π(m1−m′1)µ)
+ cos

(
2π

(√
ε

γ
(m2

1 + γm2
2)−

√
ε

γ
(m′21 + γm′22 )

))
cos(2π(m1 +m′1)µ)

]
.

(3.11)

As in the example of the previous section,ρc(ε, µ)osc1 (equation (3.10)) gives enough
information to determine individual crossings, as can be seen in figure 6. In figure 6(a) is
depicted a region of the planeε–µ where the exact quantum levels show three crossings.
Figure 6(b) shows the oscillating contribution given by equation (3.10) taking into accountm1

andm2 up to 150.
Unlike the rectangular billiard, in the present case the dependence on the parameterµ

of the oscillating contributions is quite simple. Therefore, equations (3.10) and (3.11) can be
easily integrated to obtain the oscillating part of the number of crossings in the energy interval
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[ε, ε + dε] per unity of flux,

dnc
dε
=
∫ µ=1

µ=0
ρc(ε, µ)dµ

=
∫ µ=1

µ=0
〈ρc〉 dµ +

∫ µ=1

µ=0
ρc(ε, µ)osc1 dµ +

∫ µ=1

µ=0
ρc(ε, µ)osc2 dµ. (3.12)

As we pointed out in section 2, the smooth part of the density of crossings depends only
on the energyε, so the integrated smooth part (the first integral in the right-hand side of
equation (3.12)) is given by equation (2.18). For the oscillating contributions, the integration
overµ of the terms in equation (3.10) vanishes unlessm1 = 0 (because they are proportional
to sin(2πm1)/2πm1). Therefore, we obtain∫ µ=1

µ=0
ρc(ε, µ)osc1 dµ = 2

(
ε

γ

)1
4 ∑
m2>0

1

m
1
2
2

cos
(
2πm2

√
ε − π

4

)
. (3.13)

In terms of the classical motion, the contribution equation (3.13) is originated by the orbits
that, havingm1 = 0, correspond to an irrotational motion with bounces between the bases
of the cylinder. Figure 7(a) shows the exact quantum calculation of the integrated density of
crossings obtained through a histogram. The sum of the contribution equation (3.13) (up to
m2 = 500) and the smooth part, equation (2.18), is shown in figure 7(b). We can see that the
contribution of the oscillating term (3.13) originates the sharp peaks that are present in the
exact calculation. By inspection of (3.13), we expect a sharp peak wheneverε approaches a
value such that

m2
√
ε − 1

8 = l (3.14)

for all m2 with l being an integer. Forε � 1 this condition leads toε ≈ n2. Therefore we
conclude that the peaks correspond to the regions of energy where a ‘head-rotational band’
state appears. Such states (the first state for a givenn) are the least affected by a change
of the flux (µ) (they have the smallest slope because they have angular momentum equal to
zero) and they contribute to the density of crossings in a relevant way because they will cross
with all the other states that go through (upward or downward) this region of energy. The
integration of the terms corresponding to the other oscillating contribution (3.11) also vanishes
unlessm1 = m′1. Taking into account these contributions, the integrated density of crossings
is shown in figure 7(c).

4. Concluding remarks

In this paper we have derived a semiclassical expression for the density of degeneracies,
ρc(E,µ), that occur in quantum integrable systems depending on a single parameterµ. We
have applied our results to two specific systems that depend on the parameter in a different
functional form, obtaining a quite satisfactory agreement with the exact quantum calculation.
Our results show that the density of crossings is strongly dependent on the derivative of the
Hamiltonian with respect to the parameter. Therefore, unlike the density of states, even the
smooth part of the density of crossings can depend on the energyE and on the parameterµ in a
diverse way according to the functional form ofH(µ). In particular, the smooth part ofρc for
the rectangular billiard, whereµ is the ratio between its sides, is∼E/µ. Taking into account
that the origin of the crossings between eigenenergies of integrable billiards as a function
of a shape parameter has the same and very simple interpretation in terms of geometrical
arguments [13], we expect that the dependence∼E/µ of the smooth part of the density of
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Figure 7. (a) Integrated density of crossingsdnc
dε as a function of energyε for the Aharonov–Bohm

cylindrical billiard withγ = 4
π2 . (b) The same density predicted by the sum of the smooth part〈ρc〉

and the contribution originated byρcosc1. (c) The same density predicted by〈ρc〉 + ρcosc1 + ρcosc2
(see section 3.2 in the text).

crossings holds for any integrable billiard (like the elliptic billiard whereµ is the ratio between
the axes of the elliptical box or the annular billiard whereµ is the ratio between the outer
and inner radii). On the other hand, for the Bunimovich stadium [14], there are numerical
evidences that the smooth part of the integrated density of narrowly avoided crossings (that
is the number of narrowly avoided crossings per unit ofE for a given interval ofµ, being
µ the shape parameter), shows a linear dependence on the energyE. This suggests that the
integrated distribution of narrowly avoided crossings whenµ is a shape parameter would have
the same functional dependence onE (linear) for other irregular billiards.

For the Aharonov–Bohm cylindrical billiard, the smooth part of the density of crossings
is∼√E without dependence onµ = φ (the magnetic flux). Such a result can be understood
using very simple semiclassical arguments. Let us consider the Fermi surface (for the two-
dimensional systems Fermi curve) defined byH(n1, n2, φ = 0) = E in the plane(n1, n2). The
number of states below the energyE is proportional to the area enclosed by the Fermi curve,
that is proportional toE. Whenφ varies in one fluxoid, the Fermi curve is rigidly translated
in the plane(n1, n2) defining a new curveH(n1, n2, φ = 1) = E. The number of crossings
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(betweenφ = 0 andφ = 1) is proportional to the number of points that lie in the thin shell
defined by these two curves. This number scales as the length of the Fermi curve, that is∝√E.
Such functional form should hold for other Aharonov–Bohm integrable billiards and this is the
case for the Aharonov–Bohm annular billiard [15]. Moreover, in [15] it is shown, by numerical
computation, that the distribution of spacing in flux between crossings that a given level has,
is Poissonian. This paper provides the framework to study properties of the crossing spacing
distribution, employing the two-point correlation function for the density of degeneracies.

Appendix A

In this appendix we discuss the contribution of the diagonal terms in equation (1.6) to the
semiclassical density of degeneracies. These terms, whereEn = En′, correspond to ‘self-
crossings’. It is evident that they are not genuine degeneracies and, at first glance, we should
subtract them from equation (1.6). However, as we will show below, these contributions vanish
in the semiclassical limit. In fact, whenEn = En′, equation (1.11) that defines the values ofµ

for which there is a degeneracy, is fulfilled for allµ. In such a case

ρdc ≡ 1
2

∑
En
δ(E −H(En,µ))

= 1
2ρs. (A1)

Thereforeρdc , the diagonal contribution ofρc, is equal to one-half of the density of statesρs .
For simplicity, in (A1) we adimensionalizeµ appropriately. Following [2], the semiclassical
density of states for a system havingk degrees of freedom can be written as

ρs = 〈ρs〉 + ρosc (A2)

where 〈ρs〉 ∼ 1
h̄k

and ρosc ∼ 1
h̄(k+1)/2 . Moreover, as we have shown in this paper, in the

semiclassical limit, equation (1.6) is

ρc = 〈ρc〉 + ρosc1 + ρosc2 (A3)

where〈ρc〉 ∼ 1
h̄2k , ρosc1 ∼ 1

h̄(3k+1)/2 andρosc2 ∼ 1
h̄(k+1) . Therefore, in the semiclassical limit

we neglect termsρci such thatρci ∼ 1
β

with β < (k + 1). In particular, as the diagonal

contribution (A1) is∼ 1
h̄k

, it does not contribute to the semiclassical density of degeneracies
and it is not necessary to subtract it from equation (1.6). On the other hand, in the calculations
performed in this paper for billiards, we have set ¯h = 1 and the semiclassical limit corresponds
to high-energy states. For low energies subtraction of the self-crossings would be necessary.
By inspection of figure 1 this seems to be the case. There we have plotted the smooth part of the
integrated density of crossings, equation (2.7), without the corrections for the self-crossings.
This could explain the fact that the theoretical curves are somewhat above the numerical ones
in figure 1.

Appendix B

This appendix is devoted to showing how to handle the sum equation (1.6) for the Aharonov–
Bohm cylindrical billiard. For this system, having one degree of freedom of rotation, the
conjugated states by time reversal transformation are not degenerated.

First, let us consider the billiard without flux. The eigenenergies are

h(n1, n2) = γ n2
1 + (n2 + 1)2 (B1)

wheren1 is the quantum number related to the rotation around the axis of the cylinder
(n1 = 0,±1,±2, . . .) andn2 is the quantum number related to libration motion parallel to the
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axis (n2 = 0, 1, 2, 3). The system has Kramers’000000 degeneracy. A quantum eigenstate
(n1, n2) and its conjugate(−n1, n2) have the same eigenenergy ifn1 6= 0. To take into account
these degeneracies in the sum equation (1.6) overn1, n

′
1 > 0 we must include a factore(n1, n

′
1)

in each term such that

e(n1, n
′
1) =


4 if n1 6= 0 and n′1 6= 0

2 if (n1 6= 0 and n′1 = 0) or (n1 6= 0 and n′1 6= 0)

0 if n1 = 0 and n′1 = 0.

(B2)

When the cylinder is threaded by a magnetic fluxφ, the eigenenergies of a conjugate pairs
of eigenstates are

h(n1, n2, φ) = γ (n1− φ)2 + (n2 + 1)2

h(−n1, n2, φ) = γ (−n1− φ)2 + (n2 + 1)2 = γ (n1 + φ)2 + (n2 + 1)2. (B3)

Therefore, conjugated pairs of eigenstates are no longer degenerated. In such a situation,
to preserve the sum equation (1.6) overn1, n

′
1 > 0, we must distinguish two kinds of states

according to the dependence on the flux that their eigenenergies have. Moreover, equation (1.5)
which determines the values of the parameter for which the crossings occur, changes according
to the same dependence. Thus, equation (1.6) for the cylindrical billiard means

ρc(ε, φ) = 1
2

∑
En

∑
En′
δ(ε − h(n1 + φ, n2))δ(φ − L1(n1, n2, n

′
1, n
′
2))

+1
2

∑
En6=(0,n2)

∑
En′ 6=(0,n′2)

δ(ε − h(n1− φ, n2))δ(φ − L2(n1, n2, n
′
1, n
′
2))

+1
2

∑
En

∑
En′ 6=(0,n′2)

δ(ε − h(n1− φ, n2))δ(φ − L3(n1, n2, n
′
1, n
′
2))

+1
2

∑
En6=(0,n2)

∑
En′
δ(ε − h(n1 + φ, n2))δ(φ − L3(n1, n2, n

′
1, n
′
2)) (B4)

whereL1, L2 andL3 are the values of the flux determined by the roots of

h(n1 + φ, n2)− h(n′1 + φ, n′2) = 0

h(n1− φ, n2)− h(n′1− φ, n′2) = 0

h(n1− φ, n2)− h(n′1 + φ, n′2) = 0

(B5)

respectively.
Now we employ Poisson’s formula. The first sum in equation (B4), which takes into

account the crossings between energy levels that increase as a function ofφ (this term includes
the crossings between levels(n1 = 0, n2) and(n′1 = 0, n2)), can be written as

1
2

∑
m1,m2

∑
m′1,m

′
2

∫
EI>(0,0)

∫
EI ′>(0,0)

δ(ε − h(I1 + φ, I2))δ(φ − L(I1 + φ, I2, I
′
1 + φ, I ′2)

× exp(i2π( Em · EI + Em′ · EI ′)) (B6)

where we have taken into account thatα1 = 0 andα2 = 4. To eliminate theδ functions we
employ equations (1.7)–(1.18) together with the first equation of (B5). We obtain

ρc(ε, φ,+,+) = γ

2

∑
Em

∑
Em′

∫
I1>0

∫
I ′1>0

dI1 dI ′1
|I1− I ′1|

2
√
ε − γ (I1 + φ)2

√
ε − γ (I ′1 + φ)2

× exp(i2π(m1I1 +m2I2 +m′1I
′
1 +m′2I

′
2)). (B7)
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Now, we redefinēI1(Ī ′1) ≡ I1 + φ(I ′1 + φ). After replacing it, we have

ρc(ε, φ,+,+) = γ

2

∑
Em

∑
Em′

∫
I1>φ

∫
I ′1>φ

dI1 dI ′1
|I1− I ′1|

2
√
ε − γ I 2

1

√
ε − γ I 2′

1

× exp(i2π(m1(I1− φ) +m2I2 +m′1(I
′
1− φ) +m′2I

′
2)) (B8)

where we have omitted the bar in the integration variables. In the same way, the second sum
in (B4) (using the second equation of (B5)) and the third and fourth (using the third equation
of (B5)) are

ρc(ε, φ,−,−) = γ

2

∑
Em

∑
Em′

∫
I1>−φ

∫
I ′1>−φ

dI1 dI ′1
|I1− I ′1|

2
√
ε − γ I 2

1

√
ε − γ I 2′

1

× exp(i2π(m1(I1 + φ) +m2I2 +m′1(I
′
1 + φ) +m′2I

′
2)) (B9)

ρc(ε, φ,+,−) = γ

2

∑
Em

∑
Em′

∫
I1>φ

∫
I ′1>−φ

dI1 dI ′1
(I1 + I ′1)

2
√
ε − γ I 2

1

√
ε − γ I 2′

1

× exp(i2π(m1(I1− φ) +m2I2 +m′1(I
′
1 + φ) +m′2I

′
2)) (B10)

ρc(ε, φ,−,+) = γ

2

∑
Em

∑
Em′

∫
I1>−φ

∫
I ′1>φ

dI1 dI ′1
(I1 + I ′1)

2
√
ε − γ I 2

1

√
ε − γ I 2′

1

× exp(i2π(m1(I1 + φ) +m2I2 +m′1(I
′
1− φ) +m′2I

′
2)). (B11)

Equation (B9) takes into account the crossings between energy levels that decrease as a function
of φ while equations (B10) and (B11) correspond to crossings between levels that increase and
decrease as a function ofφ. For the smooth part, we setm1 = m2 = m′1 = m′2 = 0 in the sum
of equations (B8)–(B11) and taking into account that the lower limit in the integration overIi
can be taken as 0 (becauseε � 1 impliesφ→ 0+ and−φ→ 0−) we obtain equation (2.17).

To obtain the first contribution to the oscillating partρc(ε, φ)osc1, equation (1.25), we
setm1 = m2 = 0 and we integrate overI1. Then, we approximate the integration overI ′1
using the stationary phase technique, obtaining equation (3.10). For the second contribution,
ρc(ε, φ)osc2, we evaluate both integrals (overI1 andI2) in the stationary phase condition. The
resulting equation (3.11) is long but straightforward. However, we will mention some steps.
After replacing the stationary phase condition for the actions and reducing the sums overmi
andm′i to the positive quadrants we have in equations (B8) and (B9) terms like (we write the
prefactors asA),

2A cos(S − 2πm1φ)− π
4

cos
(
S ′ − 2πm′1φ −

π

4

)
2A cos(S + 2πm1φ)− π

4
cos

(
S ′ + 2πm′1φ −

π

4

) (B12)

respectively. These terms can be appropriately combined using trigonometric identities in the
form

A[cos(S − S ′) cos(2πφ(m1−m′1)) + cos(S + S ′ + π/2) cos(2πφ(m1 +m′1))]. (B13)

In the same way the terms of equations (B10) and (B11) result:

2B cos
(
S − 2πm1φ − π

4

)
cos

(
S ′ + 2πm′1φ −

π

4

)
2B cos

(
S + 2πm1φ − π

4

)
cos

(
S ′ − 2πm′1φ −

π

4

)
.

(B14)

Therefore, the sum of these terms is

B[cos(S − S ′) cos(2πφ(m1 +m′1)) + cos(S + S ′ + π/2) cos(2πφ(m1−m′1))] (B15)
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and equation (3.11) follows. Note that equations (B12) and (B14) are a consequence of the
breaking of the time reversal symmetry when the magnetic flux is present. In such a case, twin
classical orbits (related to each other by the time reversal transformation) that have the same
action when the systems has the time reversal symmetry split their actions when the flux is
applied [16].
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[10] Walker P, Śanchez M J and Wilkinson M 1996J. Math. Phys.375019
[11] Berry M V and Tabor M 1976Proc. R. Soc.A 349101
[12] Gutzwiller M C 1990Chaos in Classical and Quantum Mechanics(New York: Springer)
[13] Traiber A J S,Fendrik A J and Bernath M 1989J. Phys. A: Math. Gen.22L365
[14] Sánchez M J, Vergini E and Wisniacki D 1996Phys. Rev.E 544812
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